Skip to main content

Abstract

World agriculture faces the challenge of food security because of the rapid growth of human population, reduced arable land area, plant productivity and climate change. Since the pioneering work on mutation of Thomas Hunt Morgan in 1910 (Am Nat 44:449–496) and the first release of an improved cultivar in tobacco in the 1930s, plant mutation breeding has become an effective breeding method. It has produced direct mutant cultivars and provided materials for further breeding. It has contributed over 3330 cultivars in more than 220 plant species. Major advantages of plant mutation breeding are: (1) mutation induction in elite materials thus little or no additional breeding is necessary, (2) fastest way of developing new improved lines, (3) applicability to all plant species and (4) generation novel traits. Today, plant mutation breeding is a much-needed weapon to combat new challenges in agriculture such as direct and indirect effects of climate change. This chapter outlines and compares methods used for physical and chemical mutagenesis for crop plant improvement. The benefits of mutation induction needed to be assessed and placed in context with respect to other options (available resources, facilities, costs, pragmatism, etc.). In this chapter, the future of mutation breeding in the light of new and exciting advances in plant sciences and technologies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aastveit K (1968) Effects of combinations of mutagens on mutations frequency in barley. In: Mutations in plant breeding II. IAEA, Vienna, pp 5–14

    Google Scholar 

  • Abe A, Kosugi S et al (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    Article  CAS  PubMed  Google Scholar 

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204

    Article  Google Scholar 

  • Albert TJ, Molla MN, Muzny DM et al (2007) Direct selection of human genomic loci by microarray hybridization. Nat Methods 4:903–905. https://doi.org/10.1038/nmeth1111

    Article  CAS  PubMed  Google Scholar 

  • Amarasinghe SL, Su S, Dong X et al (2020) Opportunities and challenges in long-read sequencing data analysis. Genome Biol 21:30. https://doi.org/10.1186/s13059-020-1935-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Asseyeva T (1931) Bud mutations in the potato. Bull Appl Bot (Leningrad) 27:135–217

    Google Scholar 

  • Auerbach C, Robson JM (1942) Experiments on the action of mustard gas in Drosophila, production of sterility and mutation. Report to the Ministry of Supply 3979

    Google Scholar 

  • Auerbach C, Robson JM (1944) Production of mutations by allyl isothiocyanate. Nature 154:81

    Article  CAS  Google Scholar 

  • Auerbach C, Robson J (1946) Chemical production of mutations. Nature 157:302. https://doi.org/10.1038/157302a0

    Article  CAS  PubMed  Google Scholar 

  • Bado S, Forster BP, Nielen S, Ghanim A, Lagoda PJL, Till BJ, Laimer M (2015) Plant mutation breeding: current progress and future assessment. Plant Breed Rev 39:23–88

    Google Scholar 

  • Bado S, Rafiri MA, El-Achouri K, Sapey E, Nielen S, Ghanim AMA, Forster BP, Laimer M (2016) In vitro methods for mutation induction in potato (Solanum tuberosum L.). Afr J Biotechnol 15(39):2132–2145

    Article  CAS  Google Scholar 

  • Bado S, Yamba NGG, Sesay JV, Laimer M, Forster BP (2017) Plant mutation breeding for the improvement of vegetatively propagated crops: successes and challenges. CAB Rev 12(028). https://doi.org/10.1079/PAVSNNR201712028

  • Baird NA, Etter PD, Atwood TS, Currey MC et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376

    Article  PubMed  PubMed Central  Google Scholar 

  • Baloch FS, Alsaleh A, Shahid MQ et al (2017) A whole genome DArTseq and SNP analysis for genetic diversity assessment in durum wheat from central fertile crescent. PLoS One 12(1):e0167821. https://doi.org/10.1371/journal.pone.0167821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bamshad MJ, Ng SB, Bigham AW et al (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 12:745–755

    Article  CAS  PubMed  Google Scholar 

  • Basiardes S, Veile R, Helms C, Mardis ER, Bowcock AM, Lovett M (2005) Direct genomic selection. Nat Methods 1(2):63–69. https://doi.org/10.1038/nmeth0105-63

    Article  Google Scholar 

  • Beissinger TM, Hirsch CN, Sekhon RS et al (2013) Marker density and read depth for genotyping populations using genotyping-by-sequencing. Genetics 193:1073–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beyaz R, Yildiz M (2017) The use of gamma irradiation in plant mutation breeding. In: Plant engineering. Intech, Rijeka, Croatia, pp 33–46. https://doi.org/10.5772/intechopen.69974

    Chapter  Google Scholar 

  • Bhat TA, Khan AH, Parveen S (2007) Spectrum and frequency of chlorophyll mutations induced by MMS, gamma rays and their combination in two varieties of Vicia faba L. Asian J Plant Sci 6(3):558–561

    Article  Google Scholar 

  • Bolon YT, Haun WJ, Xu WW et al (2011) Phenotypic and genomic analyses of a fast neutron mutant population resource in soybean. Plant Physiol 156:240–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broertjes C (1982) Significance of in vitro adventitious bud techniques for mutation breeding of vegetatively propagated crops. In: Induced mutations in vegetatively propagated plants, vol II. IAEA, Vienna, pp 1–9

    Google Scholar 

  • Broertjes C, van Harten AM (1988) Applied mutation breeding for vegetatively propagated crops. Developments in crop science No. 12. Elsevier, Amsterdam

    Google Scholar 

  • Bronowski J (1973) The ascent of man. British Broadcasting Corp, London

    Google Scholar 

  • Brunner AL, Johnson DS, Kim SW et al (2009) Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res 19:1044–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo AM, Cistué L, Vallés JM, Romagosa I, Molina-Cano JL (2001) Efficient production of androgenic doubled-haploid mutants in barley by the application of sodium azide to anther and microspore cultures. Plant Cell Rep 20:105–111

    Article  CAS  PubMed  Google Scholar 

  • Channaoui S, Labhilili M, Mouhib M, Mazouz H, El Fechtali M, Nabloussi A (2019) Development and evaluation of diverse promising rapeseed (Brassica napus L.) mutants using physical and chemical mutagens. OCL 26:35. https://doi.org/10.1051/ocl/2019031

    Article  Google Scholar 

  • Chauhan SP, Patra NK (1993) Mutagenic effects of combined and single doses of gamma rays and EMS in Opium Poppy. Plant Breed 110(4):342–345. https://doi.org/10.1111/j.1439-0523.1993.tb00600.x

    Article  CAS  Google Scholar 

  • Chen YL, Liang HL, Ma XL, Lou SL, Xie YY, Liu ZL, Chen LT, Liu YG (2013) An efficient rice mutagenesis system based on suspension-cultured cells. J Integr Plant Biol 55:122–130

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Gao M (1988) Biological and genetic effects of combined treatments of sodium azide, gamma rays and EMS in barley. Environ Exp Bot 28(4):281–288

    Article  CAS  Google Scholar 

  • Chepkoech E, Kinyua MG, Kiplagat O, Ochuodho J, Bado S, Kimno S, Chelulei M (2019) Assessment of the ploidy level diversity by chloroplast counts in stomatal guard cells of potato mutants. Asian J Res Crop Sci 4(3):1–7

    Article  Google Scholar 

  • Colbert T, Till BJ, Tompa R, Reynolds S, Tteaine MN et al (2001) High-throughput screening for induced point mutations. Plant Physiol 126:480–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by Eco-tilling. Plant J 37:778–786

    Article  CAS  PubMed  Google Scholar 

  • Cosart T, Beja-Pereira A, Chen S et al (2011) Exome-wide DNA capture and next generation sequencing in domestic and wild species. BMC Genomics 12:347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Court-of-Justice-of-the-European-Union (2018) Organisms obtained by mutagenesis are GMOs and are, in principle, subject to the obligations laid down by the GMO Directive. Press Release

    Google Scholar 

  • Cramer PJS (1907) Kristische Übersicht der bekannten Fälle von Knospenvariation. Natuurkundige Verhandelingen der Hollandsche Maatschappij van Wetenschappen, Haarlem 3:6

    Google Scholar 

  • Darwin C (1868) The variation of animals and plants under domestication. 10th imp. of the 2nd ed, 1 Vol I (1921). Murray, London

    Google Scholar 

  • Datta SK (2020) Induced mutations: technological advancement for development of new ornamental varieties. Nucleus. https://doi.org/10.1007/s13237-020-00310-7

  • Datta S, Misra P, Mandal A (2005) In vitro mutagenesis – a quick method for establishment of solid mutant in chrysanthemum. Curr Sci 88(1):155–158. http://www.jstor.org/stable/24110108

    CAS  Google Scholar 

  • Davies DR (1966) The comparative effects of a mono- and a bi-functional alkylating agent on recombination in Chlamydomonas reinhardi. Z Vererbungsl 98:61–70

    CAS  PubMed  Google Scholar 

  • de Vries H (1901) Die Mutationstheorie I. Veit & Co. Germany, Leipzig. (English transl., 1910. The Open Court, Chicago)

    Google Scholar 

  • de Vries H (1903) Die Mutationstheorie II. Veit & Co. Germany, Leipzig. (English transl., 1910. The Open Court, Chicago)

    Google Scholar 

  • de Vries H (1905) Species and varieties: their origin by mutation. The Open Court Publ. Co, Chicago, IL

    Google Scholar 

  • Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602–607. https://doi.org/10.1038/nature09886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Do KT (2009) Socio-economic impacts of mutant rice varieties in southern Vietnam. In: Shu QY (ed) Induced plant mutations in the genomics era. FAO, Rome, pp 65–68

    Google Scholar 

  • Doll H, Sandfaer J (1969) Mutagenic effect of gamma rays, diethyl sulfate, ethyl methane sulfonate and various combinations of gamma rays and the chemicals. In: Induced mutations in plants. IAEA, Vienna, pp 195–206

    Google Scholar 

  • Donini P, Sonnino A (1998) Induced mutation in plant breeding: current status and future outlook. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer Academic, Dordrecht, pp 255–291

    Chapter  Google Scholar 

  • Dwivedi AK, Banerji BK, Chakraborty D, Mandal AKA, Datta SK (2000) Gamma ray induced new flower colour chimera and its management through tissue culture. Indian J Agric Sci 70(12):853–855

    Google Scholar 

  • Esnault MA, Legue F, Chenal C (2010) Ionizing radiation: advances in plant response. Environ Exp Bot 68:231–237

    Article  CAS  Google Scholar 

  • FAO/IAEA (1975) Improvement of vegetatively propagated plants through induced mutations. In: Proceedings of a research co-ordination meeting held at Tokai, 30 September–4 October 1974 organized by the Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture, vol 173. IAEA, Vienna

    Google Scholar 

  • FAO/IAEA (1991) Mutation Breed Newslett 37. Intl Atomic Energy Agency, Vienna

    Google Scholar 

  • FAO/IAEA (2018) In: Spencer-Lopes MM, Forster BP, Jankuloski L (eds) Manual on mutation breeding, 3rd edn. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • Favret EA (1963) Genetic effects of single and combined treatment of ionizing radiations and ethyl methane sulfonate on barley seeds. In: Barley Genetics, 1’01. I, Proc. 1st Int Barley Genet. Symp., Wageningen, pp 26–3r

    Google Scholar 

  • Feng HY, Yu ZL (2012) Ion beam implantation mutagenesis. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, FAO, Oxfordshire, UK, Rome, pp 107–121

    Chapter  Google Scholar 

  • Forster BP, Shu QY (2012) Plant mutagenesis in crop improvement: basic terms and applications. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, FAO, Oxfordshire, UK, Rome, pp 9–20

    Chapter  Google Scholar 

  • Forster BP, Franckowiak JD, Lundqvist U, Thomas WTB, Leader D, Shaw P, Lyon J, Waugh R (2012) Mutant phenotyping and pre-breeding in barley. In: Shu QY, Forster BF, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, FAO, Oxfordshire, UK, Rome, pp 327–346

    Chapter  Google Scholar 

  • Forster BP, Till BJ, Ghanim AMA, Huynh HOA, Burstmayr H, Caligari PDS (2015) Accelerated plant breeding. CAB International, Oxfordshire, UK. (Online ISSN 1749-8848)

    Google Scholar 

  • Freislebe R, Lein A (1942) Uber die Auffindung einer mehltauresistenten Mutante nach Röntgenbestrahlung einer anfalligen Linie von Sommergerste. Naturwissenschaften 30:608

    Article  Google Scholar 

  • Gager CS, Blakeslee AF (1927) Chromosome and gene mutations in Datura following exposure to radium rays. Proc Natl Acad Sci U S A 13:75–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilchrist EJ, Haughn GW (2005) TILLING without a plough: a new method with applications for reverse genetics. Curr Opin Plant Biol 8:211–215

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist E, Haughn G (2010) Reverse genetics techniques: engineering loss and gain of gene function in plants. Brief Funct Genomics 9:103–110

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist EJ, Haughn GW, Ying CC, Otto SP, Zhuang J et al (2006) Use of eco-TILLING as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Mol Ecol 15:1367–1378

    Article  CAS  PubMed  Google Scholar 

  • Girija M, Dhanavel D (2009) Mutagenic effectiveness and efficiency of gamma rays, ethyl methane sulphonate and their combined treatment in cowpea (Vigna unguiculata L. Walp). Glob J Mol Sci 4:68–75

    CAS  Google Scholar 

  • Gnirke A, Melnikov A, Maguire J, Rogov P et al (2009) Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27:182–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Pando L, Eguiluz A, Jiménez J, Falconí J, Heros E (2009) Barley (Hordeun vulgare) and kiwicha (Amaranthus caudatus) improvement by mutation induction in Peru. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 330–332

    Google Scholar 

  • Goodspeed TH (1929) The effects of X-rays and radium on species of the genus Nicotiana. J Hered 20:243–259

    Article  Google Scholar 

  • Goyal S, Khan S (2010) Differential response of single and combined treatment in moist seeds of urdbean. Indian J Bot Res 6:183–188

    Google Scholar 

  • Grohmann L, Keilwagen J, Duensing N, Dagand E, Hartung F, Wilhelm R, Bendiek J, Sprink T (2019) Detection and identification of genome editing in plants: challenges and opportunities. Front Plant Sci 10:236. https://doi.org/10.3389/fpls.2019.00236

    Article  PubMed  PubMed Central  Google Scholar 

  • Gruszka D, Szarejiko I, Maluszynski M (2012) Sodium azide as mutagen. In: Shu QY, Forster BF, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, FAO, Oxfordshire, UK, Rome, pp 159–165

    Chapter  Google Scholar 

  • Gupta P, Reddaiah B, Salava H et al (2017) Next-generation sequencing (NGS)-based identification of induced mutations in a doubly mutagenized tomato (Solanum lycopersicum) population. Plant J 92(3):495–508. https://doi.org/10.1111/tpj.13654

    Article  CAS  PubMed  Google Scholar 

  • Gvozdenic S, Bado S, Afza R, Jocic S, Mba C (2009) Intervarietal differences in response of sunflower (Helianthus annuus L.) to different mutagenic treatments. In: Shu QY (ed) Induced plant mutations in the genomics era. FAO, Rome, pp 358–360

    Google Scholar 

  • Hansey CN, Vaillancourt B, Sekhon RS et al (2012) Maize (Zea mays L.) genome diversity as revealed by RNA-sequencing. PLoS One 7(3):e33071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harbour JW, Onken MD, Roberson ED, Duan S et al (2010) Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 330:1410–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haun WJ, Hyten DL, Xu WW et al (2011) The composition and origins of genomic variation among individuals of the soybean reference cultivar Williams 82. Plant Physiol 155:645–655

    Article  CAS  PubMed  Google Scholar 

  • Henry IM, Nagalakshmi U, Lieberman MC, Ngo KJ, Krasileva KV et al (2014) Efficient genome-wide detection and cataloging of EMS induced mutations using exome capture and next-generation sequencing. Plant Cell 26:1382–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillier LW, Marth GT, Quinlan AR et al (2008) Whole-genome sequencing and variant discovery in C. elegans. Nat Methods 5:183–188

    Article  CAS  PubMed  Google Scholar 

  • Hodges E, Xuan Z, Balija V, Kramer M et al (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39:1522–1527

    Article  CAS  PubMed  Google Scholar 

  • Hoischen A, van Bon BW, Gilissen C, Arts P et al (2010) De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat Genet 42:483–485

    Article  CAS  PubMed  Google Scholar 

  • Holme IB, Gregersen PL, Brinch-Pedersen H (2019) Induced genetic variation in crop plants by random or targeted mutagenesis: convergence and differences. Front Plant Sci 14:1468. https://doi.org/10.3389/fpls.2019.01468

    Article  Google Scholar 

  • Huang X, Feng Q, Qian Q et al (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain M, Iqbal MA, Till BJ, Rahman M-u (2018) Identification of induced mutations in hexaploid wheat genome using exome capture assay. PLoS One 13(8):e0201918. https://doi.org/10.1371/journal.pone.0201918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IAEA (1970) Manual on mutation breeding, Tech. Rep. Ser, vol 119, 1st edn. IAEA, Vienna

    Google Scholar 

  • IAEA (1977) Manual on mutation breeding, Tech. Rep. Ser, vol 119, 2nd edn. IAEA, Vienna

    Google Scholar 

  • Islam MS, Rahman MA, Sultana N, Nath B, Paul A (2012) Using geospatial techniques to assess the salinity impact on agricultural land use: a study on Shyamnagar Upazila, Satkhira. J Agric Environ Int Dev 106(2):157–169

    Google Scholar 

  • Jafri IF, Khan A, Gulfishan M (2013) Genomic damage induced by individual and combination treatment of gamma rays and ethyl methane sulphonate in Coriandrum sativum L var. Larishma. Int J Bot Res 3(2):79–86

    Google Scholar 

  • Jankowicz-Cieslak J, Huynh OA, Brozynska M, Nakitandwe J, Till BJ (2012) Induction, rapid fixation and retention of mutations in vegetatively propagated banana. Plant Biotechnol J 10:1056–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kempner ES (2011) Direct effects of ionizing radiation on macromolecules. J Polym Sci B Polym Phys 49(12):827–831. https://doi.org/10.1002/polb.22250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MH, Tyagi SD (2010) Studies on effectiveness and efficiency of gamma rays, EMS and their combination in soybean (Glycine max (L.) Merrill). J Plant Breed Crop Sci 2(3):55–58

    CAS  Google Scholar 

  • Kharkwal MC (2012) A brief history of plant mutagenesis. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Wallingford, pp 21–30

    Chapter  Google Scholar 

  • Khazaei H, Mäkelä PSA, Stoddard FL (2018) Ion beam mutagenesis in rye (Secale cereale L.) and faba bean (Vicia faba L.). Agric Food Sci 27:146–151

    Article  CAS  Google Scholar 

  • Klein G (1932) Handbuch der Pflanzenanalyse, Part 2, Chapter 26. Springer, Vienna

    Google Scholar 

  • Kleinhofs A, Sander C, Nilan RA, Konzak CF (1974) Azide mutagenicity - mechanism and nature of mutants produced. In: Proc. Polyploidy and Induced Mutations in Plant Breeding, Oct. 1972. IAEA, Vienna, pp 159–199

    Google Scholar 

  • Kodym A, Afza R (2003) Physical and chemical mutagenesis. Methods Mol Biol 236:189–204. https://doi.org/10.1385/1-59259-413-1:189

    Article  CAS  PubMed  Google Scholar 

  • Kodym A, Afza R, Forster BP, Ukai Y, Nakagawa H (2012) Methodology for physical and chemical mutagenic treatments. In: Shu QY, Forster BF, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, FAO, Oxfordshire, UK, Rome, pp 169–180

    Chapter  Google Scholar 

  • Konzak CF, Nilas RA, Harle JR, Heiner RE (1961) Control of factors affecting the response of plants to mutagens. Brookhaven Symp Biol 14:128–157

    CAS  PubMed  Google Scholar 

  • Konzak CF, Niknejad M, Wickham I, Donaldson E (1975) Mutagenic interaction of sodium azide on mutations induced in barley seeds treated with diethyl sulfate or M-methyln′-N′-Nitrosourea. Mutat Res 3:55–62

    Article  Google Scholar 

  • Konzak CF, Kleinhofs A, Ullrich SE (1984) Induced mutations in seed-propagated crops. Plant Breed Rev 2:13–72

    Google Scholar 

  • Kumawat S, Rana N, Bansal R, Vishwakarma G et al (2019) Expanding avenue of fast neutron mediated mutagenesis for crop improvement. Plants 8:164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kume T, Amano E, Nakanishi TM, Chino M (2002) Economic scale of utilization of radiation (II): agriculture comparison between Japan and the USA. J Nucl Sci Technol 39:1106–1113

    Article  CAS  Google Scholar 

  • Kurowska M, Labocha-Pawłowska A, Gnizda D, Maluszynski M, Szarejko I (2012) Molecular analysis of point mutations in a barley genome exposed to MNU and gamma rays. Mutat Res Fundam Mol Mech Mutagen 738–739:52–70

    Article  Google Scholar 

  • Lagoda PJL (2012) Effects of radiation on living cells and plants. In: Shu QY, Forster BF, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, FAO, Oxfordshire, UK, Rome, pp 123–134

    Chapter  Google Scholar 

  • Lal GM, Toms B, Smith S (2009) Induced chlorophyll mutations in black gram. Asian J Agric Sci 1:1–3

    Google Scholar 

  • Leitão JM (2012) Chemical mutagenesis. In: Shu QY, Forster BF, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, FAO, Oxfordshire, UK, Rome, pp 135–158

    Chapter  Google Scholar 

  • Li F, Shimizu A, Nishio T, Tsutsumi N, Kato H (2019) Comparison and characterization of mutations induced by gamma-ray and carbon-ion irradiation in rice (Oryza sativa L.) using whole-genome resequencing. G3 (Bethesda) 9(11):3743–3751. https://doi.org/10.1534/g3.119.400555

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Sun Z, Ma X, Yang B, Jiang Y, Wei D, Chen F (2015) Mutation breeding of extracellular polysaccharide-producing microalga Crypthecodinium cohnii by a novel mutagenesis with atmospheric and room temperature plasma. Int J Mol Sci 16:8201–8212. https://doi.org/10.3390/ijms16048201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López J, Rayas A, Santos A, Medero V, Beovides Y, Basail M (2017) Mutation induction using gamma irradiation and embryogenic cell suspensions in plantain (Musa spp.). In: Jankowicz-Cieslak J, Tai T, Kumlehn J, Till B (eds) Biotechnologies for plant mutation breeding. Springer, Cham. https://doi.org/10.1007/978-3-319-45021-6_4

    Chapter  Google Scholar 

  • Lundqvist U, Franckowiak JD, Forster BP (2012) Mutation categories. In: Shu QY, Forster BF, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, FAO, Oxfordshire, UK, Rome, pp 47–55

    Chapter  Google Scholar 

  • Maghuly F, Bado S, Jankowicz-Cieslak J, Laimer M (2016) Protocols for induced mutagenesis in Jatropha curcas. In: Jankowicz-Cieslak J et al (eds) Biotechnologies for plant mutation breeding. Springer International Publishing AG, Switzerland, pp 21–38. https://doi.org/10.1007/978-3-319-45021-6_2

    Chapter  Google Scholar 

  • Maghuly F, Pabinger S, Krainer J, Laimer M (2018) The pattern and distribution of induced mutations in J. curcas using reduced representation sequencing. Front Plant Sci 9:524. https://doi.org/10.3389/fpls.2018.00524

    Article  PubMed  PubMed Central  Google Scholar 

  • Magori S, Tanaka A, Kawaguchi M (2010) Physically induced mutation: ion beam mutagenesis. In: Meksem K, Kahl G (eds) The handbook of plant mutation screening. Wiley-VCH, Weinheim, Germany, pp 1–16

    Google Scholar 

  • Makay IJ, Cockram J, Howell P, Powell W (2020) Understanding the classics: the unifying concepts of transgressive segregation, inbreeding depression and heterosis and their central relevance for crop breeding. Plant Biotechnol J 19:26–34. https://doi.org/10.1111/pbi.13481

    Article  Google Scholar 

  • Makeen K, Babu GS (2010) Mutagenic effectiveness and efficiency of gamma rays, sodium azide and their synergistic effects in urd bean (Vigna mungo L.). World J Agric Sci 6(2):234–237

    CAS  Google Scholar 

  • Maluszynski M, Ahloowalia BS, Sigurbjornsson B (1995) Application of in-vivo and in-vitro mutation techniques for crop improvement. Euphytica 85:303–315

    Article  Google Scholar 

  • Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, Howard E, Shendure J, Turner DJ (2010) Target-enrichment strategies for next-generation sequencing. Nat Methods 7:111–118. https://doi.org/10.1038/nmeth.1419

    Article  CAS  PubMed  Google Scholar 

  • Matthews P, Lapins K (1967) Self-fertile sweet cherries. Fruit Var Hort Dig 21:36–37

    Google Scholar 

  • Mba C, Afza R, Bado S, Jain SM (2010) Induced mutagenesis in plants using physical and chemical agents. In: Davey MR, Anthony P (eds) Plant cell culture: essential methods. Wiley, Chichester, UK, pp 111–130

    Chapter  Google Scholar 

  • Mba C, Afza R, Shu QY (2012) Mutagenic radiations: X-rays, ionizing particles and ultraviolet. In: Shu QY, Forster BF, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, FAO, Oxfordshire, UK, Rome, pp 83–106

    Chapter  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehandjiev A, Kosturkova G, Mihov M (2001) Enrichment of Pisum sativum gene resources through combined use of physical and chemical mutagens. Israel J Plant Sci 49(4):280–284

    Article  Google Scholar 

  • Merz T, Swanson CP, Cohn NS (1961) Interaction of chromatid breaks produced by X-rays and radiomimetic compounds. Science I33:703–705

    Article  Google Scholar 

  • Mlcochova L, Chlourpek O, Uptmoor R, Ordon F, Friedt W (2004) Molecular analysis of the barley cv. ‘Valticky and its X-ray-derived semidwarf-mutant ‘Diamant’. Plant Breed 123:421–427

    Google Scholar 

  • Minocha JL, Arnason TJ (1962) Mutagenic effectiveness of ethyl methane sulphonate and methyl methane sulphonate in barley. Nature 196:499

    Article  CAS  Google Scholar 

  • Mohan RPK (1972) Biological effects of combination treatments with ionizing radiations and diethyl sulfate (dES) in barley. Mutat Res 16:322–327

    Article  Google Scholar 

  • Monastra F, Strada GD, Fideghell C, Quarta R (1998) Supernova: Une nouvelle variété d’amandier obtenue par mutagenèse. 7e Colloque GREMPA. Rapport EUR 11557:3–7

    Google Scholar 

  • Moore G, Engels J, Fowler C (2007) The international treaty on plant genetic resources for food and agriculture: access, benefit sharing and conservation. Acta Horticulturae 760:27–32. https://doi.org/10.17660/ActaHortic.2007.760.1

    Article  Google Scholar 

  • Morgan TH (1910) Chromosomes and heredity. Am Nat 44:449–496. http://www.jstor.org/stable/pdf/2455783.pdf

    Article  Google Scholar 

  • Morgan TH (1911) An attempt to analyze the constitution of the chromosomes on the basis of sex-limited inheritance in Drosophila. J Exp Zool 11:365–413

    Article  Google Scholar 

  • Moutschen J (1960) Action combinée du Mylcran et des rayons X et son importance au point de vue genetique. Hereditas 46:471–472

    Article  Google Scholar 

  • Moutschen J, Moutschen-Dahme M (1961) Effets de traitements combinés du Myleran vec d’autres poisons radiomimetiques et avec rayons X. In: Effects of ionizing radiations on seeds. IAEA, Vienna, pp 333–344

    Google Scholar 

  • Muller HJ (1927) Artificial transmutation of gene. Science 66:84–87

    Article  CAS  PubMed  Google Scholar 

  • Muth J, Hartje S, Twyman RM, Hofferbert H-R, Tacke E, Prüfer D (2008) Precision breeding for novel starch variants in potato. Plant Biotechnol J 6:576–584. https://doi.org/10.1111/j.1467-7652.2008.00340.x

    Article  CAS  PubMed  Google Scholar 

  • Neves LG, Davis JM, Barbazuk WB (2013) Whole-exome targeted sequencing of the uncharacterized pine genome. Plant J 75:146–156

    Article  CAS  PubMed  Google Scholar 

  • Ng SB, Turner EH, Robertson PD et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:272–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilan RA, Muir CE (1967) Registration of Luther barley. Crop Sci 7:278

    Article  Google Scholar 

  • Nur F, Forster BP, Osei SA, Amiteye A, Ciomas J et al (2018) Mutation breeding in oil palm: a manual. In: Forster BP, Caligari PDS (eds) Techniques in plantation science. CAB International, Wallingford UK

    Google Scholar 

  • Oehlkers F (1943) Die Auslösung Von Chromosomenmutationen in der Meiosis durch Einwirkung von Chemikalien. Z Indukt Abstammungs Vererbungs 81:313–341

    Google Scholar 

  • Oehlkers F (1946) Weitere Versuche zur Mutationsauslösung durch Chemikalien. Biol Zentralbl 65:176–186

    Google Scholar 

  • Oerke ECC, Weber A, Dehne WH, Schonbeck F (1999) Crop production and crop protection. Elsevier, Amsterdam

    Google Scholar 

  • Okou DT, Steinberg KM, Middle C, Cutler DJ, Albert TJ, Zwick ME (2007) Microarray-based genomic selection for high-throughput resequencing. Nat Methods 4:907–909. https://doi.org/10.1038/nmeth1109

    Article  CAS  PubMed  Google Scholar 

  • Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, Miah G, Usman M (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30(1):1–16. https://doi.org/10.1080/13102818.2015.1087333

    Article  CAS  Google Scholar 

  • Olejniczak J (1994) Genetic variability induced through mutations in maize. In: Bajaj YPS (ed) Maize, Biotechnology in agriculture and forestry, vol 25. Springer, Berlin, pp 355–365. https://doi.org/10.1007/978-3-642-57968-4_24

    Chapter  Google Scholar 

  • Olejniczak J, Patyna H (1981) Mutagenic effect of N-methyl-N-nitrosourea (MNUA) and sodium azide (SA) in maize line S-75 (Zea mays L.). Genet Polon 22(3):289–294

    CAS  Google Scholar 

  • Oster II (1958) Interactions between ionizing radiations and chemical mutagens. Z Verebungslehre 89:1–6

    CAS  Google Scholar 

  • Pathirana R (2011) Plant mutation breeding in agriculture. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 6:1–20

    Google Scholar 

  • Periyannan S (2018) Sustaining global agriculture through rapid detection and deployment of genetic resistance to deadly crop diseases. New Phytol 219:45–51. https://doi.org/10.1111/nph.14928

    Article  CAS  PubMed  Google Scholar 

  • Rai MK, Kalia RK, Singh R, Gangola MP, Dhawan AK (2011) Developing stress tolerant plants through in vitro selection-an overview of the recent progress. Environ Exp Bot 71:89–98

    Article  Google Scholar 

  • Rana RS (1965) Radiation-induced variation in ray-floret characteristics of annual chrysanthemum. Euphytica 14:296–300. https://doi.org/10.1007/BF00149515

    Article  Google Scholar 

  • Rao MPK, Konzak CF, Nilan RA, Dhesi SS (1965) The influence of hydrogen ion concentration on radiation induced damage in barley. Radiat Bot 5:455–463

    Article  Google Scholar 

  • Rapoport IA (1946) Carbonyl compounds and the chemical mechanism of mutations. Dok Acad Nauk SSSR Ser Biol 54:65–67

    CAS  Google Scholar 

  • Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM (2014) Effects of ionizing radiation on biological molecules—mechanisms of damage and emerging methods of detection. Antioxid Redox Signal 21(2):260–292. https://doi.org/10.1089/ars.2013.5489

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenzweig C, Iglesias A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events. Glob Change Hum Health 2(2):90–104

    Article  Google Scholar 

  • Roux N, Toloza A, Radecki Z, Zapata-Arias FJ, Dolezel J (2003) Rapid detection of aneuploidy in Musa using flow cytometry. Plant Cell 21:483–490

    Article  CAS  Google Scholar 

  • Roy SJ, Tucker EJ, Tester M (2011) Genetic analysis of abiotic stress tolerance in crops. Curr Opin Plant Biol 14(3):232–239

    Article  CAS  PubMed  Google Scholar 

  • Roychowdhury R, Tah J (2013) Mutagenesis a potential approach for crop improvement. In: Hakeem KR, Ahmad P, Ozturk M (eds) Crop improvement: new approaches and modern techniques. Springer, New York, pp 149–187

    Chapter  Google Scholar 

  • Rutger JN (2009) The induced sd1 mutant and other useful mutant genes in modern rice varieties. In: Shu QY (ed) Induced plant mutations in the genomics era. FAO, Rome, pp 44–47

    Google Scholar 

  • Sakharov VV (1932) Iodine as a chemical factor, affecting mutational process in Drosophila melanogaster. Biol Zh 1(3–4):1–8

    Google Scholar 

  • Saleem MY, Mukhtar Z, Cheema AA, Atta BM (2005) Induced mutation and in vitro techniques as a method to induce salt tolerance in Basmati rice (Oryza sativa L.). Int J Environ Sci Technol 2(2):141–145. https://doi.org/10.1007/BF03325868

    Article  CAS  Google Scholar 

  • Sathesh-Prabu C, Lee Y-K (2011) Mutation breeding of mushroom by radiation. J Radiat Ind 5(4):285–295

    Google Scholar 

  • Scheiden MJ (1838) Beiträge zur phytogenesis. In: Müller J (ed) Archiv für Anatomie Pysiologgie Wissenschaftliche Medicin. Viet, Berlin, pp 137–176

    Google Scholar 

  • Schlötterer C, Tobler R, Kofler R et al (2014) Sequencing pools of individuals - mining genome-wide polymorphism data without big funding. Nat Rev Genet 15:749–763

    Article  PubMed  Google Scholar 

  • Serrat X, Esteban R, Guibourt N, Moysset L, Nogués S, Lalanne E (2014) EMS mutagenesis in mature seed-derived rice calli as a new method for rapidly obtaining TILLING mutant populations. Plant Methods 10(1):5. https://doi.org/10.1186/1746-4811-10-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Shkvarnikov PK, Morgun VV (1975) Mutations in maize, induced by chemical mutagens. Proc Indian Nat Sci Acad 41B(3):177–187

    Google Scholar 

  • Shu QY (2009) Induced plant mutation in the genomics era. FAO & IAEA, Rome, Italy. 458p

    Google Scholar 

  • Shu QY, Shirasawa K, Hoffmann M, Hurlebaus J, Nishio T (2012a) Molecular techniques and methods for mutation detection and screening in plants. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, FAO, Oxfordshire, UK, Rome, pp 241–268

    Chapter  Google Scholar 

  • Shu QY, Forster BP, Nakagawa H (2012b) Principles and applications of plant mutation breeding. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, FAO, Oxfordshire, UK, Rome, pp 301–325

    Chapter  Google Scholar 

  • Sigurbjörnsson B, Micke A (1974) Philosophy and accomplishments of mutation breeding. In: Polyploidy and induced mutations in plant breeding. IAEA, Vienna, pp 303–343

    Google Scholar 

  • Sikora P, Chawade A, Larsson M, Olsson J, Olsson O (2011) Mutagenesis as a tool in plant genetics, functional genomics, and breeding. Int J Plant Genomics 2011:314829., 13 pages. https://doi.org/10.1155/2011/314829

    Article  CAS  PubMed  Google Scholar 

  • Snyder EB, Grigsy HC, Hidalgo JU (1961) X-radiation of southern pine seed at various moisture contents. Silvae Genetica Band 10 Heft 5

    Google Scholar 

  • Soriano JD (1963) Some effects of combining X-rays and ethyl methane sulfonate on barley seeds (Abstr.). Genetics 48:91I

    Google Scholar 

  • Sparrow AH (1961) Types of ionizing radiation and their cytogenetic effects. Symposium on mutation and plant breeding by National Academy of Sciences Council Publication 891, pp 55–129

    Google Scholar 

  • Sparrow AH, Singleton WR (1953) The use of radio cobalt as a source of gamma-rays and some effects of chronic irradiation on growing plants. Am Nat 87:29–48

    Article  Google Scholar 

  • Spiegel-Roy P (1990) Economic and agriculture impact of mutation breeding in fruit trees. Mutat Breed Rev Vienna 5:215–235

    Google Scholar 

  • Srinivas RT, Veerabadhiran P (2010) Efficiency and effectiveness of physical and chemical mutagens and their combination in inducing chlorophyll mutations in M2 generation of Lablab [Lablab purpureus (l.) Sweet var. Typicus.]. Electron J Plant Breed 813(1):752–757

    Google Scholar 

  • Srivastav PK, Raina SN (1981) Cytogenetics of Tephrosia II. Mutagenic effect of single, pre- and post-irradiation treatments with EMS and MMS in Tephrosia purpurea. Cytologia 46:709–721

    Article  Google Scholar 

  • Stadler LJ (1928a) Genetic effects of x-rays in maize. Proc Natl Acad Sci U S A 14:69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadler LJ (1928b) Mutations in barley induced by X-rays and radium. Science 68:186–187

    Article  CAS  PubMed  Google Scholar 

  • Stadler LJ (1929) Chromosome number and the mutation rate in Auena and Triticum. Proc Natl Acad Sci Washington 15:876–4381

    Article  CAS  Google Scholar 

  • Sulonen AM, Ellonen P, Almusa H et al (2011) Comparison of solution-based exome capture methods for next generation sequencing. Genome Biol 12:R94. https://doi.org/10.1186/gb-2011-12-9-r94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suprasanna P, Jain SM, Ochatt SJ, Kulkarni VM, Predieri S (2012) Applications of in vitro techniques in mutation breeding of vegetatively propagated crops. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, FAO, Oxfordshire, UK, Rome, pp 371–385

    Chapter  Google Scholar 

  • Surakshitha NC, Soorianathasundaram K, Ganesan NM (2017) Determination of mutagenic sensitivity of hardwood cuttings of grapes ‘Red Globe’ and ‘Muscat’ (Vitis vinifera L.) to gamma rays. Sci Hortic 226:152–156. https://doi.org/10.1016/j.scienta.2017.08.040

    Article  CAS  Google Scholar 

  • Sutarto I, Agisimanto D, Supriyanto A (2009) Development of promising seedless citrus mutants through gamma irradiation. In: Shu QY (ed) Induced plant mutations in the Genomics Era. FAO, Rome, Italy, pp 306–308

    Google Scholar 

  • Szurman-Zubrzycka M, Chmielewska B, Gajewska P, Szarejko I (2017) Mutation detection by analysis of DNA heteroduplexes in TILLING populations of diploid species. In: Jankowicz-Cieslak J, Tai T, Kumlehn J, Till B (eds) Biotechnologies for plant mutation breeding. Springer, Cham. https://doi.org/10.1007/978-3-319-45021-6_18

    Chapter  Google Scholar 

  • Tadele Z, Mba C, Till BJ (2009) TILLING for mutations in model plants and crops. In: Jain SM, Brar DS (eds) Molecular techniques in crop improvement, 2nd edn. Springer, Netherlands, pp 307–332

    Google Scholar 

  • Tanaka A (2009) Establishment of ion beam technology for breeding. In: Shu QY (ed) Induced plant mutation in the genomics era. Food and Agriculture Organizations of the United Nations, Rome, pp 216–219

    Google Scholar 

  • Tanaka A, Shikazono N, Hase Y (2010) Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J Radiat Res 51:223–233

    Article  CAS  PubMed  Google Scholar 

  • Tehrani G, Brown SK (1992) Pollen-incompatibility and self-fertility in sweet cherry. Plant Breed Rev 9:367–388

    Google Scholar 

  • Till BJ, Reynolds SH, Greene EA, Christine AC, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai H, Howell T, Nitcher R et al (2011) Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol 156(3):1257–1268. https://doi.org/10.1104/pp.110.169748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ukai Y, Nakagawa H (2012) Strategies and approaches in mutant population development for mutant selection in seed propagated crops. In: Shu QY, Forster BF, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, FAO, Oxfordshire, UK, Rome, pp 209–221

    Chapter  Google Scholar 

  • Valeva SA (1964) Cytogenetic analysis of the combined action of chemicals and irradiation on barley seeds. Radiobiologiya 4:451–456

    CAS  Google Scholar 

  • van Harten AM (1998) Mutation breeding: theory and practical applications. Cambridge University Press, Cambridge

    Google Scholar 

  • van Harten AM, Broertjes C (1989) Induced mutations in vegetatively propagated crops. Plant Breed Rev 6:55–91

    Google Scholar 

  • Vardi A, Levin I, Carmi N (2008) Induction of seedlessness in citrus: from classical techniques to emerging biotechnological approaches. J Am Soc Hortic Sci 133:117–126

    Article  Google Scholar 

  • Viana VE, Pegoraro C, Busanello C, de Oliveira AC (2019) Mutagenesis in rice: the basis for breeding a new super plant. Front Plant Sci 10:1326. https://doi.org/10.3389/fpls.2019.01326

    Article  PubMed  PubMed Central  Google Scholar 

  • Vinh MQ, Thinh DK, Bang DT, At DH, Ham LH (2009) Current status and research directions of induced mutation application to seed crops improvement in Vietnam. In: Shu QY (ed) Induced plant mutations in the genomics era. FAO, Rome, pp 341–345

    Google Scholar 

  • von Sengbush R (1927) Süsslupinen und öllupinen. Lanswirtschaftliches Jahrbuch 91:723–880

    Google Scholar 

  • Wallace AT (1965) Increasing the effectiveness of ionizing radiations in induced mutations at the vital locus controlling resistance to fungus Helminthosporium victoriae in oats. Radiation Botany (Suppl) 5:237–250

    Google Scholar 

  • Wani AA (2009) Mutagenic effectiveness and efficiency of gamma rays, ethyl methane sulphonate and their combination treatments in chickpea (Cicer arietinum L.). Asian J Plant Sci 8:318–321

    Article  CAS  Google Scholar 

  • Winfield MO, Wilkinson PA, Allen AM et al (2012) Targeted re-sequencing of the allohexaploid wheat exome. Plant Biol J 10:733–742

    CAS  Google Scholar 

  • Wu KJ, Zimmer C, Peltier E (2020) Nobel Prize in chemistry awarded to 2 scientists for work on genome editing. The New York Times 7. https://www.nytimes.com/2020/10/07/science/nobel-prize-chemistry-crispr.html

  • Xianfang W, Long Z, Weixu D, Chunhua L (2004) Study of space mutation breeding in China. Acta Agric Nucl Sin 18(4):241–246

    Google Scholar 

  • Yamaguchi H (2018) Mutation breeding of ornamental plants using ion beams. Breed Sci 68(1):71–78. https://doi.org/10.1270/jsbbs.17086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao R, Gao S, Qiao Y, Zhu H, Bi Y (1994) A new approach of screening salt-tolerance variants by anther culture to cultivate salt-tolerance wheat variety. Acta Agric Boreali Sin 9:34–38

    Google Scholar 

  • Zhao R, Gao S, Qiao Y, Zhu H, Bi Y (1995) Studies on the application of anther culture in salt-tolerance breeding in wheat (Triticum aestivum L.). Acta Agron Sin 21:230–234

    Google Scholar 

  • Zhao L, Zhang H, Kohnen MV, Prasad KVSK, Gu L, Reddy ASN (2019) Analysis of transcriptome and epitranscriptome in plants using PacBio Iso-Seq and nanopore-based direct RNA sequencing. Front Genet 10:253. https://doi.org/10.3389/fgene.2019.00253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bado .

Editor information

Editors and Affiliations

Ethics declarations

The authors would like to dedicate this chapter to Udda Lundqvist who died recently. Udda Lundqvist was a pioneer in plant mutation genetics, especially in barley, which became a model crop for mutation studies. She inspired many and will be greatly missed.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bado, S., Forster, B.P., Maghuly, F. (2023). Physical and Chemicals Mutagenesis in Plant Breeding. In: Penna, S., Jain, S.M. (eds) Mutation Breeding for Sustainable Food Production and Climate Resilience. Springer, Singapore. https://doi.org/10.1007/978-981-16-9720-3_3

Download citation

Publish with us

Policies and ethics