CONTACT
Seed World

New Plant Study Could Affect Global Response to Climate Change

Professor Robin Allaby, University of Warwick in a field of barley

New simulations by researchers at the University of Warwick and UCL’s Institute of Archaeology of plant evolution over the last 3,000 years have revealed an unexpected limit to how far useful crops can be pushed to adapt before they suffer population collapse. The result has significant implications for how growers, breeders and scientists help agriculture and horticulture respond to quickening climate change.
The new study has just been published in the journal Evolutionary Genomics and is entitled “Evolutionary Genomics Surprisingly Low Limits of Selection in Plant Domestication“ It runs counter to the most common current thinking that plants are able to cope with evolutionary pressures that strain thousands of points of change in a plant and its genetic make up at a time. While there is a cost to the plant population in undergoing such a selection pressure that cost was seen as affordable.
The new research led by Professor Robin Allaby from the University of Warwick’s School of Life Sciences, simulated 3,000 generations of crop plants with an annual cycle. The researchers found that in fact if pushed to change too much too soon these plants came up against a genetic cliff face. The plants moved from a high likelihood of survival as a species if faced with anything up to 50-100 change pressures at a time, to almost certain irreversible population collapse and extinction if pushed even slightly beyond 50-100 such changes.
This new study turns the spotlight back to the original thoughts of acclaimed evolutionary biologist JBS Haldane. He was the one of the first scientists to suggest that there may be a relatively low limit to the number of traits (or loci in plants governed by such mechanisms as genetic changes) that can be under selection pressures to change before that overall plant population suffers a population collapse sufficiently severe as to threaten the plant’s extinction.
“These simulations show how and why the spread of agriculture was likely tempered by the ability of crops to adapt to new environments, leading to economic collapse when the pace was too fast. Now we face a similar situation as modern environments change with the climate,” Allaby says.

RELATED ARTICLES
ONLINE PARTNERS
GLOBAL NEWS